SEVERAL DISTANCE BASED INDICES FOR COMPLEMENT OF GRAPHS

S. Parameswari and K. Balasangu*
Department of Mathematics, Arignar Anna Govt Arts college, Villupuram - 605752, Tamil Nadu, INDIA
E-mail : eswarip651@gmail.com
*Department of Mathematics, Thiru kolanjiappar Govt Arts college, Viruthachalam - 606001, Tamil Nadu, INDIA

(Received: Mar. 15, 2020 Accepted: April. 20, 2020 Published: Apr. 30, 2020)

Abstract

A graph G is said to have property P if for every pair of its adjacent vertices x and y there exists a vertex z such that z is not adjacent to x and y. In this paper, we establish an explicit formula to calculate the several graph indices for the complement of any graph G having above property. As a corollary we obtain the several graph indices for the complement of certain derived graphs.

Keywords and Phrases: Topological index, distance, derived graph.
2010 Mathematics Subject Classification: 05C12, 05C76.

1. Introduction and Preliminaries

For vertices $u, v \in V(G)$, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G and let $d_{G}(v)$ be the degree of a vertex $v \in V(G)$. The diameter of the graph G is $\max \left\{d_{G}(u, v) \mid u, v \in V(G)\right\}$. A topological index of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. There exist several types of such indices, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index.

